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Abstract-The case of a vertical hot plate surrounded by an electrically conducting fluid is exammed 
in the presence of a magnetic field acting in a direction perpendicular to the induced movement caused 
by the buoyant forces. 

It is found that similarity solutions exist, provided that the intensity of the magnetic field changes 
with the inverse fourth root of the distance measured in the direction of the flow. 

The resulting differential equations of motion and energy have solutions depending on the Prandtl 
number, the Grashof number and a non-dimensional third number (say Z) representing the ratio of 
the ponderomotive force over the buoyant force. 

Theoretical asymptotic solutions have been obtained for constant wall temperature in the following 
cases: 

(a) Very high Prandtl and small Z numbers. In this case the inertia forces may be neglected. 
(b) Very high Z numbers regardless of Prandtl numbers. 
(c) Zero and small Prandtl numbers. 
Exact solutions obtained by an analogue computer are also reported. It is found that the action of the 

magnetic field is to decelerate the flow thus decreasing the Nusselt number. For a constant Prandtl 
number the rate of decrease of the heat transfer coefficient with increasing values of the non-dimen- 
sional number Z is higher for smaller values of Z; on the other hand for the same value of the para- 
meter Z, the rate of decrease of the same coefficient is higher for lower Prandtl numbers. 

The case of non-similarity solutions is also investigated; the basic differential equations for a constant 
transverse magnetic field and fields depending on a power of the vertical distance are given. 

It is found that experiments in the laboratory are feasible since the parameter Z is of the order of one 
to ten for liquid metals. 

NOMENCLATURE 

a,, a2, coefficients defined by equations (37) 
Pr, Prandtl number ; 
p, function defined by equation (16) ; 

and (38) ; 
B, 
4, 

c, 
Gr, 

g, 
k 

L, 

magnetic inductance; 
characteristic magnetic inductance 
defined in equation (9) ; 
quantity defined by equation (5); 
Grashof number defined by equation 
(6) ; 
gravitational constant; 
in equation (21) coefficient of thermal 
conductivity, in all other cases denotes 
-0;; 
characteristic length in the direction of 
main flow; 

Nu, Nusselt number : 

T, 
u, 
0, 
X, 
Y, 
Z, 

temperature; 
velocity component in the x direction; 
velocity component in the Y direction; 
Cartesian co-ordinate; 
Cartesian co-ordinate; 
magnetic parameter defined by equa- 
tion (10); 

z*, parameter defined by equation (25). 

Greek symbols 
a, thermal diffusivity; 
r, gamma function; 
5, similarity function defined by equation 

(4); 
‘I, similarity parameter defined by equa- . ,.\ 

* Presented at the Tenth International Congress of 
Applied Mechanics held from 31 August to 7 September 
1960, at Stresa, Italy. 

tion (4) ; 
non-dimensional temperature function 
defined by equation (3); 
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K, K’, transformation constants defined by 
equations (A2) and (A6) ; 

A, A’, transformation constants defined by 
equations (A2) and (A6) ; 

V, kinematic viscosity; 

P, density : 
0, electrical conductivity; 

*9 stream functions defined by equation 

(4). 

of an analogue computer and the results are 
compared with the available approximative 
solutions. 

Asymptotic solutions are also presented for 
the following cases : 

(a) High Prandtl numbers and small magnetic 
fields. 

(b) High magnetic fields regardless of Prandtl 
numbers. 

Subscripts 

c, denotes the edge of the boundary layer; 
U’, refers to the wall; 

a, refers at an infinite distance from the 
wall ; 

0, denotes new transformed variables in 
equation (A2); 
Primes denote differentiation with 
respect to the variable 7. 

(c) Zero and small Prandtl numbers. 

1. INTRODUCTION 

IN the present paper the case of a hot vertical 
plate surrounded by an electrically conducting 
fluid for constant wall temperature is examined 
in the presence of a magnetic field acting 
transversally to the induced movement caused 
by the buoyant forces. The geometry is similar 
to the classical Pohlhausen problem [l]. As in 
the case of the magnetic boundary layers around 
wedges investigated in [2], it is first examined 
whether similarity solutions for the natural 
convection case exist. This question will be 
answered in the affirmative; different asymptotic 
solutions of the appropriate similarity equations 
will be given. 

A class of non-similarity solutions is also 
discussed for which the basic differential 
equations resulting from a suitable series 
expansion scheme, are given. 

Qualitatively, anticipating the solution, the 
following things are expected to happen: In the 
absence of an applied or induced electric field 
the magnetic lines offer resistance to the flow 
and as a result the thermally induced motion is 
retarded. This means that the shear stress at the 
wall is lowered and as a result the heat transfer 
coefficient will also be lowered. 

Particular emphasis will be given to the 
solution for Prandtl numbers of the order 0.01, 
since both liquid metals and highly ionized 
gases are in this range. The geometry and flop 
conditions of the present paper may be approxi- 
mated in the laboratory by making use of liquid 
metals. One perhaps may think of possible 
applications in the interior of the earth, or at the 
surface of the sun where steep temperature 
gradients exist in the presence of magnetic 
fields. 

The same general problem reported here, has 
been tackled independently in [3,4, 51. In [4] the 
only existing similarity solution in the case of the 
vertical wall was recognized, nevertheless a 
solution was given for a non-similarity case. 
In [5] the similarity solution in the steady state 
case is obtained by using an integral method in 
the manner of [6] ; in the same reference the 
solution of the transient problem is also ob- 
tained. In [7] a class of similarity solutions is 
discussed by allowing non-isothermal conditions 
at the wall. 

2. BASIC ASSUMPTIONS AND EQUATIONS 

The following assumptions will be made in the 
present work : 

(a) The magnetic field is constant in the 
direction perpendicular to the wall, 
throughout the thickness of the boundary 
layer. It remains also perpendicular to the 
oncoming stream lines. 

(b) The induced electric current does not 
distort appreciably the applied magnetic 
field. 

In the present work, use is made of Saunder’s (c) The coefficient of electrical conductivity 
approximate method of integration [8]. An is a scalar and remains constant every- 
exact solution is also obtained through the use where. 
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(d) The electric field calculated is the same 
frame of reference in which velocity is 

;+&Lo (1) 
measured is zero. 

au a24 
Assumption (a) is not difficult to realize in 

practice if the magnetic field is created by the 
~4 a< f u 5 = 

parallel poles of a strong electromagnet and if a2u T, - Tm 
the flow takes place around the central region v-+g -___ 

aY2 i 1 TC0 
@_Z!52 

P 
(2) 

where the field will be most uniform. It should 
be emphasized however that this last region where 
should be comfortably greater than the thickness T-T, @_=__ 
of the boundary layer. If the uniformity of the 
applied magnetic field cannot be assumed, then 
one may use an average magnetic field calculated 
according to the specific law of its variation. In 
[9] it was shown in a similar case that the final 
result is equally acceptable. 

T, - Tm’ (3) 

The following definitions are now made: 

a+ a* 7 

u=ay’ v=-ax 

i 
(4) 

7 = $2 , 4 = 4vcx3’45(7) 
Assumption (b) is true as long as the magnetic 

Reynolds number is small: for terrestrial dimen- 
sions with rather low velocities and electrical 
conductivities corresponding to liquid metals, where 

this is always the case. 
Assumption (c) should be understood to be 

c 

valid as long as the electrical conductivity is 
calculated at an average temperature. In liquid with 

metals it is always a scalar, whereas in ionized 
gases its scalar character will be conserved as 

Gr = gx3(Tw - Td 

v2T, ’ (6) 

long as the collision frequency of the particles 
is much higher than the cyclotron frequency. 

In the above, # represents the stream function, 

Assumption (d) is exact as long as the induced 
5(q) a similarity function, 17 the similarity para- 

current lines close in themselves ; in a two 
meter and Gr the local Grashof number. With 

dimensional case. like the one under considera- 
the help of the above it is easy to calculate that: 

tion, this occurs’ at infinity. From a practical u = 4vx1%25’ 
point of view it may easily be arranged by an 
appropriate short circuit in the plane x, z where 

v = vex-114 (75’ - 35). 

x is the direction of the vertical plate, y the Equation (2) can now be transformed 
direction of the magnetic field with x and y (x, y) system of co-ordinates to the 
mutually perpendicular. The induced current follows : 

will appear in the z direction and according to 
Ohm’s law after taking into account assumption 
(d) it will be equal to CUB. In this case the 
retarding force per unit volume J x B acting in 
the direction x will be equal to -uB2u. 

It will be furthermore assumed that all equili- 
brium and transport properties are constant. 

The conservation equations of mass and 
momentum are then written as follows : 7 

t See [IO] for details regarding these equations in the 
non-magnetic case. The nomenclature of this reference 
is used here as much as possible. 

I- (7) 

from the 
(x, 17) as 

= 0. (8) 

The primes indicate differentiation with respect 
to the parameter 7. 

The last term in the above equation represents 
the ponderomotive term and it is seen that a 
similarity solution exists if it is independent 
of the distance x. This can only be done with a 
magnetic field varying with x as follows: 
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The above condition insures that the non- 
dimensional ratio 2 is independent of x and is 
given as foIlows:f 

zs 

,B2x1;2 ,B2Llf2 
_-2_.. == __Li_ . 

PVC PVC 
(10) 

From equation (9) one can see that there is a 
singular point at x = 0 (at the leading edge), 
nevertheless it is well known that the boundary 
layer equations are not valid there. The present 
situation is exactly the same with the problem of 
existence of similarity solutions in laminar flow 
with mass transfer at the wall where in the case 
of the flat plate it is demanded that the rate of 
mass injection be inversely proportional to the 
square root of x. Both types of singularity are 
integrable. 

Using the magnetic parameter 2 the equation 
of motion becomes: 

5”’ + 355” - 2(1;‘)2 + 0 - Z<’ = 0. (11) 

Next we write the energy equation by neg- 
lecting the viscous and Soulean dissipation. 
This is a customary simp~~cation since both 
energies per unit volume are negligibly small 
when compared with the amount of energy 
conducted. In terms of the function 0 we have: 

i10 80 a20 
ll>; $- 1) z = a by” (13) 

where a is the thermal diffusivity. 
Using the similarity transformation the above 

becomes : 

0” + 3(Pr)&Y = 0 (14) 

where Pr is the Prandtl number. 
The boundary conditions to the basic equa- 

tions (12) and (14) are as follows: 

Atrl==O: 5 ={‘=O, O=l 
1;7=00: [‘=O, 0 = 0. ? 

(15) 

This is a system of ordinary nonlinear differential 
equations of the fifth order. Their solution is 

t In terms of other non-d~ensional parameters it is 
easy to show that 2 is the ratio of the Hartmann number 
M divided by the square root of the Grashof number. 
‘The Efartmann number is defined here as the ratio of 
the ponderomotive force over the viscous force, a more 
natural definition than the usual one. More precisely: 
Z = 2~J(Gr~lfz. 

well known for different Prandtl numbers in the 
non-magnetic case with 2 = 0. The purpose of 
the remaining portion of this paper is the 
investigation of the influence of the parameter Z. 

3. SOLUTION OF THE SIMILARITY EQUATIONS 

In order to obtain an approximate solution the 
method described by Saunders [8] will be used. 
We introduce a new function defined as follows: 

(16) 

From equation (14) we find 

where the prime on p denotes differentiation 
with respect to 0. Furthermore we assume that 
the function p is given by a polynomial of the 
third degree as follows: 

p(0) = - 0,; [(I - 0)” - I]. (18) 

The above satisfies the boundary conditions at 
0 =O(T+ co)andO = 1 (?+O). 

The temperature gradient at the wall O,;,, will 
be estimated by satisfying the equation of 
conservation of momentum at the value 8 = 4. 
Substitution of equation (18) in equation (11) 
gives : 

f 
-72 -_.. 

< E!. 
I 

I 
1 

In another form we find 

The equivalent result of [5] in which a para- 
bolic non-dimensional temperature profile and 
an appropriate cubic velocity profile are used, 
is the following: 
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1 

N”=1/2 

An exact solution of the fundamental equa- 
tions (11) and (14) was found by using an 
analogue computer. The functions --Ok and 
5$’ are given in Table 1 for different values of the (Gr)1’4. (23) 

parameters Pr and 2. For the case 2 = 0 and 
two Prandtl numbers the results obtained are For relatively small Prandtl numbers, equation 

compared with the ones presented in [1 1] by the (19) gives7 
use of a digital computer. The agreement is 
very good. For low Prandtl and high 2 numbers 
it was difficult to obtain sound solutions through 

-% = J({-;+ J[(;j”+ ;]}(Prl). 

the analogue computer. (24) 

Table 1 

._ - 
I 

Pr = 073 Pr = 0.30 Pr = 0.10 Pr = 0.03 Pr = 0.02 Pr = 0.01 
-~ --- --,-,-,- 

5:: --8, 4; -0; 1 5; -Sk 5; 

0.2284 ( 0.8618 -I-__i--- 0.1332 0.9270 0.1112 0.9606 1 0.0804 0.9900 
-------- 

0.13464\ 0.93841 0.11164 0.95896 I I ---- -- 
IO.7670 0.1238 0.8164 0.1038 0.8444 0.0752 0.8646 

I I -- -- 
0.6804 1 0.1160 1 0.7272 0.0962 1 0.7504 / 0.0707 1 0.7658 / 

3.0 / 0.3730 / 0.4472 / 1 ~ / ; 1 1 ( / ( 

In Fig. 1, equations (19) and (21) are com- 
pared with the analogue computer results. For 
low Prandtl and small 2 numbers equation (19) 
is in better agreement with the exact solution 
when compared with equation (21). For high 2 
numbers however equation (21) is better than 
equation (19). This behavior will become clear 
when we discuss the asymptotic solutions. 

The amount of heat transferred per unit area 
per unit time to the fluid is given as follows : 

q(x) = - kcx-1’4 0; (T, - Tm). (22) 

Using the ordinary definition of Nusselt number 
in conjunction with equations (20) and (22) we 
calculate 

Similarly equation (2 1) gives : 

-%= &+;+ J[(g2Tgj}(Pr)). 
(25) 

From the above results we draw the following 
conclusions: For a constant Prandtl number the 
rate of decrease of the heat transfer coefficient 
is higher for smaller values of 2; on the other 
hand for the same value of the magnetic field 
(same 2) the heat transfer coefficient drops faster 
for smaller Prandtl numbers. 

t For Pr < 0.02, 21/Pr can be neglected compared to 
7/8Pr2. 
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FIG. I. Temperature gradients for different Prandtl 
numbers and magnetic numbers Z. 

4. ASYMPTOTIC SOLUTIONS 

Small Prim&l tlumbers 
Let us now examine the case of very small 

Prandtl numbers when the viscous forces may be 
neglected, Furthermore let us assume that 
the buoyant force expressed by 0 in equation (11) 
is represented by an average value equal to i.7 
Neglecting the term 355” we have: 

- 2(5’)2 + + - Z5’ = 0. 

From which 

(26) 

1’ = -$+ Jc(;j”+;] =Z* (27) 

and 
5 = z*q. (28) 

From equation (28) it is seen that within the 
present approximation the term 356” is indeed 

negligible. Substitution of the above approxima- 
tion found for i into the energy equation gives: 

0” + ~(P~~z*~~~ = 0. (29> 

It is now easy to integrate this equation once and 
calculate the slope of 0 at the wall. We find: 

(30) 

or 

-0; = 1.38 (Z”Pv)1’2. 

In the above r represents the gamma function. 
For Z = 0 we calculate 

(-O:,.), _,! z 0.88 (PY)~:~. (30 

On the other hand for 2 := 0 Saunder’s formula 
[equation (19)] yields 

(-O&_,, = O-868 (P+,“_ (32) 

In [ll] it is quoted that the asymptotic solution 
for Z = 0 and PI- + 0 found by Lefevre is given 
as follows : 

(-O,l,,),=, = 0.85 (Pr)li2. (33) 

The error of equations (31) and (32) is between 
2 and 3.5 per cent and it is thus seen that our 
assumption on the average value of 0 for small 
Prandtt numbers is correct. 

Equation (21) based on the results of [5] or 
[fi] for 2 = 0 gives 

<-O&_ = 0.727 (P+‘2. (34) 

The error from the exact solution in this 
limiting case is about 14.5 per cent. 

From the above it follows that the Saunders 
formula constitutes a better approximation for 
the smaller Prandtl numbers and moderate 
values of 2 than Eckert’s formula. 

Substitution of equation (27) in equation (30) 
gives : 

-0; = J({-& + J[ (&j8+ 0*6])(IV). 

(35) 

Comparison of the above with equation (24) 
derived from the Saunders approximation shows 
that they are in good agreement. 
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Let us now consider the case of small Prandtl 
numbers and high Z numbers. Then equations 
(24) and (35) give respectively the following 
asymptotic expressions: 

-0; = 0,756 d[(Pr)/Z] (36) 

-e:, = o-794 d[@)/Z]. (37) 

The difference being the two coefficients of 
proportionality is less than 5 per cent. The 
corresponding result from [5] is: 

- 0; = 0895 y’[{P$/Z] (38) 

From equation (29) we note however that for 
very high values of the parameter Z the value of 
0 will tend in the limit to be one, rather than 
+. With this change in equation (26), equation 
(37) must be replaced with the following: 

-0,; ;; 1.38 q[(P@Z]. (39) 

It is now clear that the exact asymptotic solution 
should yield a numerical coe~cient between 
O-794 and l-38. As a matter of fact the average of 
these two values 1.087 coincides with the exact 
one which can be computed as follows:t 

Neglecting both the inertia and viscous forces 
in the equation of motion (11) we have: 

Substitution in the energy,equation (14) yields : 

5”’ + 3Pr55” = 0. 

The boundary conditions are: 

(40) 

5(O) = 0, O(0) I-- 25’(O) = 1, {‘(a) = 0. 

The above differential equation has been solved 
numerically in [12, 131. The terms of the 
present notation the result is: 

-O:, = 1.087 y’[{Pr)/Z]. (41) 

It is concluded therefore that equations (37) and 
(38) are in error of about 30 and 18 per cent 
respectively. 

From equation (30) one sees that in effect the 
magnetic field lowers the heat transfer coefficient 
by simply lowering the Prandtl number by the 
factor Z*. This behavior of the magnetic field is 

-._- 
-1. For this computation the author is indebted to Dr. 
Andreas Acrivos of the University of California at 
Berkeley. 

not new. In [Z], where the similarity solutions for 
magnetic boundary layers in wedge type of flows 
are discussed, the same dependence was shown to 
exist. One is tempted, for purposes of calculating 
heat transfer coefficients to define an equivalent 
magnetic Prandtl number from relations of the 
form : 

m%lrtm . = f(Pr, Z). 

Zero Prandtl number and zero magnetic field 
It is shown in the Appendix that the velocity 

profile for the case of Z = 0 with Pr -+ 0 and 
0; --f 0 corresponds exactly to an incompres- 
sible similarity solution for a wedge of an angle 
equal to 2~/3. This asymptotic solution seems to 
have escaped the attention of workers in the 
field. It is worth noting that the value of j”(O) 
for Pr -+ 0 is equal to 1.070 as found in the 
Appendix. The lowest calculated value of S”(O) 
for 2 - 0, is the one of [I I] obtained by numeri- 
cal integration and for Pr = OGO3 is equal 
to 1.0223. 

Large Prandtl numbers 
An attempt will now be made to calculate the 

heat transfer coefficient for very large Prandtl 
numbers. Obviously this solution can be only of 
theoretical interest, since for liquid metals or 
ionized gases the Prandtl numbers are smaller 
than one. 

It is known that for highly viscous fluids the 
function 0 assumes the value zero for small 
values of the similarity parameter ‘1 the slope of 
8 being very steep at the origin. 

We make the following assumption 

0 = exp (--kq) . (42) 

The coefficient k is a numerical constant which 
actually denotes the slope of 0 at the wall. By 
neglecting the inertia forces, the equation of 
motion yields : 

5”’ -t- exp t---k?) - Zg’ = 0. (43) 

The solution of this equation satisfying the 
boundary conditions at the wall is: 

5’ = z--& (exp f---k?) -- exp [--l/(Z)rt). (44) 

For high Prandtl numbers the boundary layer 
terminates at a very small value of 9, so that in 
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the vicinity of the wall we may expand the 
quantity exp (-/CT) into a series, and retain the 
first two terms. For moderate magnetic fields, at 
least up to the order 2 - I?, we may also 
expand the term exp [--~/(Z)T] into a series and 
retain the first two terms. The final result is : 

This formula must now be corrected to take into 
account the fact that at 71 -+ co, 5’ actually goes 
to zero rather than infinity. For this purpose let 
us assume that the boundary layer thickness is 
equal to Q and furthermore that the actual 
behavior of I’ is a parabolic one between zero 
and ve of the form:? 

5’==a,q (I -;). 
Since it was shown that equation (45) is valid 

for small values of 7, for which the square 
component of equation (46) is small, we set: 

1 

al = y’(Z) f k 

On the other hand, the accuracy of the value 
of the heat transfer coefficient depends solely on a 
correct estimate of 1. We therefore set the con- 
dition that the area under the curve of equation 
(46) be equal to the area under the straight line 

where a2 is a coefficient of proportjonality to 
substitute the one of equation (45), giving a 
better average value within the boundary layer 
thickness. We set: 

From the above we find a2 and hence: 

1 

Cc = 312/(2)Tkf ?l. 

A simple integration yields : 

t This form is suggested by the known solution for 
4’ in the case 2 = 0. 

Substitution of the above: into the energy 
equation gives the following value for k = -@a 
after a straightforward calculation : 

or 

i 

Pr 1 
113 

-@FlJ = OS617 d(Z) + (-g-J * 

We test now this result in the case where Z = 0 
for which a solution is known (9). We find: 

(-- @&_, = O-695 Prl14. (51) 

The coefficient of proportionality for Prandtl 
numbers 100 and 1000 is given in [lo] as 0.690 
and 0.692 respectively. 5 The result is of equation 
(51) is therefore in good agreement with the 
exact solution (for Z = 0) and justifies our 
assumptions. 

Equation (50) has been plotted in Fig. 2 for a 
value of Prandtl number equal to 100. It is seen 
that the heat transfer coefficient drops fast for 
small Z’s and much slower later. In other words 
the same behavior is shown for high and low 
Prandtl numbers. Physically such a situation 
ought to be expected, since the ponderomotive 
force is proportional to the velocity; for the same 
degree of deceleration, corresponding to the 
same Prandtl number, higher increments of 
Z’s are needed at the high Z’s (where the local 
velocities are small) to produce the same drop 
in heat transfer with the one correspon~ng to an 
increment of LIZ in the neighborhood of a lower 
Z. 

Equation (50) is strictly speaking valid for 
small values of the parameter 2, of the order of 
(-@b)2 as explained before. For very high 
magnetic fields tending to make @it, equal to 

$ The reason for seeking to estimate i as a power of 
v is explained by the fact that for the calculation of S:, we 
need the value of the definite integral 

JO JO 

which reduces to a gamma function for I; - T*. Numeri- 
cal calculations are needed when 4 is given by a poly- 
nomial exponential function. 

3 In reality [lo] gives the values corresponding to the 
mean heat transfer, which are the above divided by the 
factor &/2. 
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FIG. 2. Temperature gradients for Pr = 100 and 
different magnetic numbers Z. 

zero, the viscous forces will be negligible and the 
heat transfer coefficient will exhibit the same 
behavior with equation (41) found for the 
case of very small Prandtl numbers. 

In conclusion we now make an estimate of the 
order of magnitude of the parameter 2 in order 
to assess whether an experiment is feasible in the 
laboratory in the course of which reductions in 
heat transfer will be observed. For liquid 
mercury with a magnetic field of 10 000 Gauss, 
a heating ratio (Tsu - Tmf/Tm = I.5 and a 
characteristic length of 0.1 m, we find 2 ;; 1.25. 
If we choose a liquid metal lighter than mercury 
with a density ten times less, with all other 
conditions remaining the same, 2 will be equal to 
125. From Fig. 1 we estimate that for Pr = 0.02 
and Z = 1 a reduction in heat transfer, of 25 per 
cent should be expected, whereas for 2 = 5 the 
reduction will be equal to 60 per cent. 

It is concluded that laboratory experiments 
should be able to show the influence of a 
magnetic field in heat transfer in natural 
convection. 

5. NON-SIMILARWY SOLUTIONS 

For a magnetic field which does not vary 
according to the one fourth power law of 
equation (9), similarity in the sense of equation 

(11) does not exist and we must work with 
equation (8) instead. 

Let us assume in the notation of [4] the fol- 
lowing series expansion for the stream function 
$1 

+ WYX77) + * * . > (52) 

For the 0 function we assume: 

@ = @o(q) + @WM?7) + (nx)a”@Zt~) i- - * * (53) 

Substitution of equations (52) and (53) into the 
momentum and energy equations yields the 
fo~owing results: in the zeroth approximation 
we get the equations of the non-magnetic case 
already solved in [l]. In the first approximation 
we get the following set: 

it:” + 3&f;;’ - 407 + l)s;C; 

+ (4p + 3)5*5, - i; + 01 = 0 (54) 

0; + Pr (3&+9; - 4pO,& 

4 (4p + 3)5,@;1 = 0. (55) 

Under the condition : 

pvdynx)” = uBW2. (56) 

Now let 

(57) 

The condition (56) becomes: 

ZE (58) 

Hence it is necessary for the power law (58) to 
have 

P=zh+* (59) 

and 

(nx)” = Z i ’ 
!) 

In terms of the above, equations (52) and (53) 
become : 
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It is obvious that the value h = -2 yields the 
similarity case already discussed at length. 
Ref. 4 presents a numerical calculation for the 
case of h = $ with p = 1. Equations (54) and 
(55) become: 

0; + PY {3&O; - 40,5; + 7&O;} = 0. (64)t 

Of interest to a future investigator might be the 
case of a constant magnetic field corresponding 
to the casep = 4. 
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APPENDIX 

Asymptotic Solutions jtir Z = 0 and Pr --f 0 

At Pr --f 0 we expect to have 0 --f I. For 
Z = 0 the momentum equation gives 

5”’ + 355” = 2(5’)2 - 1 

By inspection we see that for 7 + a, 

7’ --f 1/%‘2. 

iAl) 

This boundary condition is an asymptotic 
expression of the fact that for smaller Prandtl 
numbers (high thermal conductivities) high 
temperatures persist at larger distances from the 
wall and thus make the maximum velocity 
appear further and further away from the 
boundary. In the limit Pr + 0, this maximum 
velocity will occur at an infinite distance. We 
define the transformation : 

5 = dd%J, 770 = h CA3 

We calculate 

i“ = K&(?Io), 5” = Kx2<;(%) 

<“’ =: Kh3[;‘(7,0). (A31 

Substitution of the above in equation (Al) 
yields 

K/\%$’ + 3K2/\25,,5; = (~K~X~{;)~ - 1. (A4) 
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We make Now we have to solve the equation: 

KX3 = 3K2h2 and 2lc2x2 = 1. 5;’ + 505;’ = g [(Q2 - 11. 645) 

From the above we deduce that 

K = x/3 = (18)1’4 and Kh3 = 3. 

This is the well known solution for an incom- 
pressible flow over a wedge of angle 2~r/3 [lo]. 
It is easy to calculate now that 

With these values we can verify that for 7 -z- co, 

5;(%J) + 1. 

Resume--Cet article traite le cas dune plaque chaude verticale baignant dam un fluide Clectriquement 
conducteur sur lequel agit un champ magnetique perpendiculaire au mouvement induit dit aux forces 
de convection libre. 

On a trouve qu’il existait des solutions semblables pourvu que l’intensite du champ magnetique 
varie comme l’inverse de ld racine quatrieme de la distance mesuree dans la direction de l’ecoulement. 

Les equations differentielles du mouvement et de l’energie ant des solutions qui dependent du 
nombre de Prandtl, du nombre de Grashof et d’un troisieme nombre sans dimensions (appele Z) 
representant le rapport des forces de pesanteur aux forces de convection libre. 

Des solutions asymptotiques theoriques ont ete obtenues pour une temperature de paroi constante 
dans les cas suivants: 

(a) tres grands nombres de Prandtl et petits nombres Z. Dans ce cas les forces d’inertie peuvent 
etre negligees. 

(b) tres grands nombres 2 par rapport aux nombres de Prdndtl. 
(c) petits nombres de Prandtl et nombre de Prandtl nul. 
Des solutions exactes obtenues avec un calculateur analogique sont egalement rapportees. On a 

trouve que le champ magnetique a pour effet de ralentir l’ecoulement et par suite de diminuer le 
nombre de Nusselt. Pour un nombre de Prandtl constant, le taux de diminution du coefficient d’echange 
thermique est plus tleve pour des grands Z que pour des petits Z; d’autre part, pour une meme valeur 
du parametre Z, le taux de diminution de ce coefficient est plus grand pour des nombres de Prandtl 
plus bas. 

Le cas des solutions non-semblables a Bgalement ete Ctudie, les equations differentielles fonda- 
mentales sont donnees pour un champ magnetique transversal constant et pour des champs dependant 
dune puissance de la distance verticale. 

On a trouve que les experiences en laboratoire Ctaient possibles puisque le parametre 2 est de l’ordre 
de 1 a IO pour les metaux liquides. 

~u~menfassnng-Die Arbeit behandelt den Fall der beheizten senkrechten Platte in einer elektrisch 
ieitenden Fliissigkeit und eincm senkrecht zur Auftriebsrichtung wirkenden Magnetfeld. ~hnli~hkeits- 
liisungen kijnnen angegeben werden, wenn sich die Intensitgt des Magnetfeldes mit dem Reziprokwert 
der vierten Wurzel aus dem Abstand in Str~mungsri~htung andert. Die Llisungen der erhaitenen 
~ifferentialgleich~gen fir Bewegung und Energie hangen ab von der Prandtlzahl, der Grashofzahl 
und einer dritten dimensionslosen G&se (genannt Z), die das Verhaitnis der ponderomotorischen 
Kraft zur Auftriebskraft darstellt. Fur folgende Falle wurden bei konstanter Wandtemperatur theo- 
retische asymptotische Liisungen gefunden: 

(a) Sehr hohe Prandtl- und kleine Z-Zahlen. Die Trigheitskrafte konnen dabei vernachlgssigt 
werden. 

(b) Sehr hohe Z-Zahlen bei beliebigen Prandtlzahlen. 
(c) Kleine Prandtlzahlen einschliesslich Null. 

Ein Analogrechner lieferte exakte Losungen. Es zeigte sich, dass das Magnetfeld den Fluss hemmte umd 
damit die Nusseltzahl verkleinerte. Bei konstanter Prandtlzahi ist die Abnabme des WLrmeiibergangs- 
koeffizienten mit wachsendem 2 grosser bei kleineren Z-Werten; bleibt der Parameter Z konstant, so 
erfolgt eine starkere Abnahme des W~~e~bergangskoeffizienten bei kleineren Prandtlzahlen. Auch 
fur den Fall, dass keine ~hnli~hkeitsl~sung besteht, wurden Untersuchungen angestellt; die grnnd- 
s&lichen Differentialgleich~gen fur ein konstantes querlaufendes Magnetfeld und Felder, die vom 
senkrechten Abstand abh&gen, sind angegeben. Da der Parameter Z fur fliissige Metalle von der 

Griissenordnung l/l0 ist, sind Laboratoriumsversuche m6glich. 
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